Results

eNauka >  Results >  High-throughput phenotyping for non-destructive estimation of soybean fresh biomass using a machine learning model and temporal UAV data
Title: High-throughput phenotyping for non-destructive estimation of soybean fresh biomass using a machine learning model and temporal UAV data
Authors: Ranđelović, Predrag  ; Đorđević, Vuk  ; Miladinović, Jegor  ; Prodanović, Slaven  ; Ćeran, Marina  ; Vollmann, Johann
Issue Date: 2023
Publication: Plant Methods
ISSN: 1746-4811 Plant Methods Search Idenfier
Type: Article
Collation: vol. 19 br. 1 str. 89
DOI: 10.1186/s13007-023-01054-6
WoS-ID: 001093871700002
Scopus-ID: 2-s2.0-85169119775
PMID: 37633921
PMCID: PMC10463513
URI: https://enauka.gov.rs/handle/123456789/787552
http://fiver.ifvcns.rs/handle/123456789/4064
Metadata source: (Preuzeto iz CrossRef-a) Ranđelović, Predrag
M-category: 
21aM21a

5
SCOPUSTM
1
PubMed CentralTM
4
WEB OF SCIENCETM
Altmetric
Dimensions
Unpaywall

Items in eNauka are protected by copyright, with all rights reserved, unless otherwise indicated.