Results
eNauka >
Results >
Essential Oils as Antimicrobials against Acinetobacter baumannii: Experimental and Literature Data to Definite Predictive Quantitative Composition-Activity Relationship Models Using Machine Learning Algorithms
Title: | Essential Oils as Antimicrobials against Acinetobacter baumannii: Experimental and Literature Data to Definite Predictive Quantitative Composition-Activity Relationship Models Using Machine Learning Algorithms | Authors: | Astolfi, Roberta; Oliva, Alessandra; Raffo, Antonio; Sapienza, Filippo; Ragno, Alessio; Proia, Eleonora; Mastroianni, Claudio M; Luceri, Cristina; Bozovic, Mijat; Mladenovic, Milan; | Issue Date: | 2025 | Publication: | JOURNAL OF CHEMICAL INFORMATION AND MODELING | ISSN: | 1549-9596![]() ![]() |
Type: | Article | Collation: | vol. 65 br. 3 str. 1378-1391 | DOI: | 10.1021/acs.jcim.4c02389 | WoS-ID: | 001403553800001 | Scopus-ID: | 2-s2.0-85215935824 | URI: | https://enauka.gov.rs/handle/123456789/966174 | Project: | ARSIAL | Metadata source: | (Preuzeto iz Nasi u WoS) | M-category: | 21aM21a |
Items in eNauka are protected by copyright, with all rights reserved, unless otherwise indicated.