Results

eNauka >  Results >  Floating Point and Fixed Point 32-bits Quantizers for Quantization of Weights of Neural Networks
Title: Floating Point and Fixed Point 32-bits Quantizers for Quantization of Weights of Neural Networks
Authors: Peric, Zoran  ; Savic, Milan  ; Dincic, Milan  ; Vucic, Nikola  ; Djosic, Danijel  ; Milosavljevic, Srdjan  
Issue Date: 2021
Publication: 2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE)
ISSN: 1843-8571 Search Idenfier
Publisher: {IEEE}
Type: Conference Paper
DOI: 10.1109/atee52255.2021.9425265
WoS-ID: 000676164800120
Scopus-ID: 2-s2.0-85106720063
URI: https://enauka.gov.rs/handle/123456789/781667
Project: Ministry of Education, Science and Technological Development, Serbia
Science Fund of the Republic of Serbia [6527104]
(AI-Com-in-AI)
Metadata source: (Preuzeto iz ORCID-a) Djosic, Danijel
M-category: 
Mp. category will be shown later

15
SCOPUSTM
2
OpenCitations
9
WEB OF SCIENCETM
Altmetric
Dimensions
Unpaywall

Google ScholarTM

Items in eNauka are protected by copyright, with all rights reserved, unless otherwise indicated.