Results
eNauka >
Results >
Automated identification of aquatic insects: A case study using deep learning and computer vision techniques

Title: | Automated identification of aquatic insects: A case study using deep learning and computer vision techniques | Authors: | Simović, Predrag ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Issue Date: | 2024 | Publication: | Science of The Total Environment | ISSN: | 0048-9697![]() ![]() |
Type: | Article | Collation: | vol. 935 str. 172877-172877 | DOI: | 10.1016/j.scitotenv.2024.172877 | WoS-ID: | 001246464400001 | Scopus-ID: | 2-s2.0-85193980963 | PMID: | 38740196 | URI: | https://enauka.gov.rs/handle/123456789/920571 https://biore.bio.bg.ac.rs/handle/123456789/7423 |
Metadata source: | (Preuzeto iz CrossRef-a) Milosavljević, Aleksandar | M-category: | 21aM21a |

SCOPUSTM

WEB OF SCIENCETM
Altmetric
Dimensions
Unpaywall
Items in eNauka are protected by copyright, with all rights reserved, unless otherwise indicated.