Rezultati

eNauka >  Rezultati >  In Vitro Antioxidant and In Vivo Antigenotoxic Features of a Series of 61 Essential Oils and Quantitative Composition-Activity Relationships Modeled through Machine Learning Algorithms
Naziv: In Vitro Antioxidant and In Vivo Antigenotoxic Features of a Series of 61 Essential Oils and Quantitative Composition-Activity Relationships Modeled through Machine Learning Algorithms
Autori: Mladenovic, Milan P; Astolfi, Roberta; Tomasevic, Nevena M  ; Matic, Sanja Lj  ; Bozovic, Mijat; Sapienza, Filippo; Ragno, Rino
Godina: 2023
Publikacija: ANTIOXIDANTS
ISSN: 2076-3921 Antioxidants Pretraži identifikator
Tip rezultata: Naučni članak
Kolacija: vol. 12 br. 10 str. 1815-1815
DOI: 10.3390/antiox12101815
WoS-ID: 001090562000001
Scopus-ID: 2-s2.0-85175299795
PMID: 37891894
PMCID: PMC10604248
URI: https://enauka.gov.rs/handle/123456789/934831
https://scidar.kg.ac.rs/handle/123456789/19090
Projekat: Serbian Ministry of Science, Technological Development, and Innovation [451-03-47/2023-01/200122, 451-03-47/2023-01/200378]
Progetti di Ricerca di Universita 2015, Sapienza Universitadi Roma [C26A15RT82, C26A15J3BB]
Izvor metapodataka: (Preuzeto iz Nasi u WoS)
M-kategorija: 
21a+M21a+ - Vodeći međunarodni časopis kategorije M21a+

6
SCOPUSTM
2
PubMed CentralTM
1
OpenCitations
5
WEB OF SCIENCETM
Alt metrika
Dimensions
Unpaywall

Rezultati na eNauka su zaštićeni autorskim pravima i sva prava su zadržana, osim ako nije drugačije naznačeno.