Results

eNauka >  Results >  Improving the Performance of Electrotactile Brain–Computer Interface Using Machine Learning Methods on Multi-Channel Features of Somatosensory Event-Related Potentials
Title: Improving the Performance of Electrotactile Brain–Computer Interface Using Machine Learning Methods on Multi-Channel Features of Somatosensory Event-Related Potentials
Authors: Novičić, Marija  ; Djordjević, Olivera  ; Miler-Jerković, Vera  ; Konstantinović, Ljubica  ; Savić, Andrej M.  
Issue Date: 2024
Publication: Sensors
ISSN: 1424-8220 Sensors Search Idenfier
Type: Article
Collation: vol. 24 br. 24 str. 8048-8048
DOI: 10.3390/s24248048
WoS-ID: 001386952500001
Scopus-ID: 2-s2.0-85213207016
PMID: 39771785
PMCID: PMC11679428
URI: http://zaposleni.etf.bg.ac.rs/rest/sciNaucniRezultati/oai/record/2/709805
https://www.mdpi.com/1424-8220/24/24/8048
https://enauka.gov.rs/handle/123456789/954479
Project: Science Fund of the Republic of Serbia under the Program for Excellent Projects of Young Researchers (PROMIS) [6066223]
Metadata source: (Preuzeto iz CrossRef-a) Savić, Andrej
M-category: 
21M21

1
SCOPUSTM
1
WEB OF SCIENCETM
Altmetric
Dimensions
Unpaywall

Items in eNauka are protected by copyright, with all rights reserved, unless otherwise indicated.