Results
eNauka >
Results >
Improving the Performance of Electrotactile Brain–Computer Interface Using Machine Learning Methods on Multi-Channel Features of Somatosensory Event-Related Potentials
| Title: | Improving the Performance of Electrotactile Brain–Computer Interface Using Machine Learning Methods on Multi-Channel Features of Somatosensory Event-Related Potentials | Authors: | Novičić, Marija |
Issue Date: | 2024 | Publication: | Sensors | ISSN: | 1424-8220 Sensors Search Idenfier |
Type: | Article | Collation: | vol. 24 br. 24 str. 8048-8048 | DOI: | 10.3390/s24248048 | WoS-ID: | 001386952500001 | Scopus-ID: | 2-s2.0-85213207016 | PMID: | 39771785 | PMCID: | PMC11679428 | URI: | http://zaposleni.etf.bg.ac.rs/rest/sciNaucniRezultati/oai/record/2/709805 https://www.mdpi.com/1424-8220/24/24/8048 https://enauka.gov.rs/handle/123456789/954479 |
Project: | Science Fund of the Republic of Serbia under the Program for Excellent Projects of Young Researchers (PROMIS) [6066223] | Metadata source: | (Preuzeto iz CrossRef-a) Savić, Andrej | M-category: | 21M21 |
Items in eNauka are protected by copyright, with all rights reserved, unless otherwise indicated.