Results

eNauka >  Results >  Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics
Title: Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics
Authors: Cuong, Dinh Viet; Lalic, Branislava N; Petric, Mina; Binh, Nguyen Thanh; Roantree, Mark
Issue Date: 2024
Publication: PLOS ONE
ISSN: 1932-6203 PLoS One / Public Library of Science Search Idenfier
Type: Article
Collation: vol. 19 br. 12 str. e0315762-e0315762
DOI: 10.1371/journal.pone.0315762
WoS-ID: 001400361000072
Scopus-ID: 2-s2.0-85213343304
PMID: 39715201
PMCID: PMC11666042
URI: https://enauka.gov.rs/handle/123456789/966069
Project: Taighde Eireann - Research Ireland through the Insight Centre for Data Analytics [SFI/12/RC/2289\_P2]
COST Action by COST (European Cooperation in Science and Technology) [CA20108]
Metadata source: (Preuzeto iz Nasi u WoS)
M-category: 
22M22

1
SCOPUSTM
1
PubMed CentralTM
1
WEB OF SCIENCETM
Altmetric
Dimensions
Unpaywall

Items in eNauka are protected by copyright, with all rights reserved, unless otherwise indicated.